Chemical Bonding

 Nature of the bond formed between two elements depends on the

 (a) Oxidation potential
 (b) Electronegativity

- (c) Ionization potential (d) Electron affinity
- 2. Two elements X and Y have following electronic configurations $X = 1s^2$, $2s^2 2p^6$, $3s^2 3p^6$, $4s^2$ and $Y = 1s^2$, $2s^2 2p^6$, $3s^2 3p^5$. The expected compound formed by combination of X and Y is [BHU 1990] (a) XY_2 (b) X_5Y_2 (c) X_2Y_5 (d) XY_5
- 3. Electricity do not pass through ionic compounds
 (a) In solution
 (b) In solid state
 (c) In melted state
 (d) None of these
- **4.** From the following which compound on heating readily sublimes
 - (a) NaCl (b) $MgCl_2$
 - (c) $BaCl_2$ (d) $AlCl_3$
- 5. Which one in the following contains ionic as well as covalent bond [IIT 1979; CPMT 1983; DPMT 1983]
 (a) CH₄
 (b) H₂
 - (c) *KCN* (d) *KCl*
- The solution of sugar in water contains [NCERT 1972; MP PET 2000]
 - (a) Free atoms
 - (b) Free molecules
 - (c) Free ions
 - (d) Free atoms and free molecules
- 7. In which of the following reactions, there is no change in the valency [NCERT 1974; CPMT 1971, 78]
 (a) 4KClO₃ →3KClO₄ + KCl
 - (b) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$
 - (c) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$
 - (d) $2BaO + O_2 \rightarrow 2BaO_2$
- 8. The octet rule is not followed in [BHU 1981] (a) F_2 (b) NaF
 - (c) CaF_2 (d) BF_3
- 9. Sodium chloride is an ionic compound whereas hydrogen chloride is a gas because [KCET 2002]
 (a) Sodium is reactive
 - (b) Covalent bond is weaker than ionic bond
 - (c) Hydrogen chloride is a gas

	(d) Covalent bond is stronger than ionic bond
10.	Which one of the following molecules has a

- Which one of the following molecules has a
coordinate bond[CPMT 1988, 94](a) NH_4Cl (b) $AlCl_3$
- (c) NaCl (d) Cl_2

ET Self Evaluation Test - 3

- **11.** Co-ordinate bond is absent in
(a) BH_4^{\bigcirc} (b) CO_3^{-2} [RPMT 2002]
 - (c) H_3O^+ (d) NH_4^{\oplus}
- **12.** The dipole moment of chlorobenzene is 1.73 D. The dipole moment of p-dichlorobenzene is expected to be

[CPMT 1991]

- (a) 3.46 D (b) 0.00 D (c) 1.73 D (d) 1.00 D
- **13.** Polarization of electrons in acrolein may be written as

[IIT 1988]

(a)
$$\overset{\delta^-}{C}H_2 = CH - \overset{\delta^+}{C}H = O$$
 (b) $\overset{\delta^-}{C}H_2 = CH - CH = \overset{\delta^+}{O}$
 $\overset{\delta^-}{\delta^+}$ $\overset{\delta^+}{\delta^+}$ $\overset{\delta^+}{\delta^+}$ $\overset{\delta^-}{\delta^+}$

(c)
$$C H_2 = C H - CH = O$$
 (d) $C H_2 = CH - CH = O$

14. The order of dipole moments of the following molecules is

[Roorkee 2000]

🕀 www.studentbro.in

- (a) $CHCl_3 > CH_2Cl_2 > CH_3Cl > CCl_4$ (b) $CH_2Cl_2 > CH_3Cl > CHCl_3 > CCl_4$ (c) $CH_3Cl > CH_2Cl_2 > CH_2Cl_2 > CHCl_3 > CCl_4$
- (d) $CH_2Cl_2 > CHCl_3 > CH_3Cl > CCl_4$
- 15. The electronegativity of *C*, *H*, *O*, *N* and *S* are 2.5,2.1, 3.5, 3.0 and 2.5 respectively. Which of the following bond is most polar
 - (a) O-H (b) S-H(c) N-H (d) C-H
- **16.** Which of the following bond has the most polar character
 - [DPMT 1982; CBSE PMT 1992; CPMT 1999]
 - (a) C O (b) C Br
 - (c) C-S (d) C-F

CLICK HERE

- **17.** The geometry of H_2S and its dipole moment are[**IIT 1999**]
 - (a) Angular and non-zero (b) Angular and zero
 - (c) Linear and non-zero (d) Linear and zero

150 Chemical Bonding

	1 Je enemiear bein				
18.	How many σ and π bonds are there in the molecule of tetracyanoethylene			(a) Planar triangle	(b) Pyramidal
				(c) Tetrahedral	(d) Square planar
	$ \begin{array}{c} N \equiv C \\ N \equiv C \end{array} > C = C < \begin{array}{c} C \equiv N \\ C \equiv N \end{array} $		26.	Which of the following bond energy	g halogens has the highes [CPMT 1988]
	[NCERT 1980; MP PN	MT 1986, 95;Orissa JEE 1997]		(a) <i>F</i> ₂	(b) <i>Cl</i> ₂
	(a) Nine σ and nine π (b) Five σ and nine π (c) Nine σ and seven π (d) Five σ and eight π		27.	(c) Br ₂	(d) <i>I</i> ₂
				What bond order does O_2^{2-} have [Pb. PMT 2001	
19. 20.	The shape of H_3O^+ ion is [EAMCET 1993; CPMT 2001]			(a) 3	(b) 2
				(c) 1	(d) 1/2
	(a) Linear	(b) Angular	28.		$O_2^{+2} + e$ the electron lost i
	(c) Trigonal planar (d) Triangular pyramidal			from	
	The hybridization in sulphur dioxide is[IIT 1986; DPMT 1990]				[Orissa JEE 2002
	(a) <i>sp</i>	(b) sp^{3}		(a) Bonding π -orbital	(b) Antibonding π -orbita
	(c) sp^2	(d) dsp^2		(c) $2p_z$ orbital	(d) $2p_x$ orbital
		•	29.	The maximum number	of hydrogen bonds forme
21.	The number and type of bonds between two carbon atoms in CaC_2 are		r	by a water molecule in	ice is
	(a) One sigma (σ) and one pi (π) bonds		L	[MP PET 1993; AFMC	2002;UPSEAT 1999, 2001, 0
	-	-		(a) 4	(b) 3
	(b) One sigma (σ) and two pi (π) bonds			(c) 2	(d) 1
	(c) One sigma (σ) and one and a half pi (π) bonds		30.	Hydrogen bonding is not present in	
	(d) One sigma (σ) bond			[AIIMS 1998; MP PET/PMT 1998	
2.	Which of the following resonating structures of N_2O is the most contributing [Roorkee Qualifying 19]		0081	(a) Glycerine (b) Water	
	-		990]	(c) Hydrogen sulphide	
	(a) $N \equiv N - O$ (c) $N = N - O$			(d) Hydrogen fluoride	
3.	The hybridization of atomic orbitals of nitrogen in			The bonds in K_4 [Fe (CN) ₆] are
_3.	NO_2^+ , NO_3^- , and NH_4^+ are		[[IIT.Bernening 2000]	
	(a) sp , sp^3 and sp^2 respectively			(b) All covalent	
	(b) sp , sp^2 and sp^3 respectively			(c) Ionic and covalent	
	(c) sp^2 , sp and sp^3 respectively			(d) Ionic, covalent and	
			32.	In which of the following ionic, covalent ar coordinate bonds are present	
	(d) sp^2 , sp^3 and sp respectively			(a) Water	
4.	The molecule having one unpaired electron is [IIT 1985; MP PMT 1989]			(b) Ammonia	
	(a) <i>NO</i>	(b) <i>CO</i>		(c) Sodium cyanide	
	(c) <i>CN</i> ⁻	(d) O_2		(d) Potassium bromide	
25.	The geometry of ClO_3^- ,	according to valence shell			
-	electron pair repulsion (VSEPR) theory will be				
	1 1				

[KCET 1996; MP PET 1997]

Get More Learning Materials Here :

C Answers and Solutions

- (b) If the two elements have similar electronegativities, the bond between them will be covalent, while a large difference in electronegativities leads to an ionic bond.
- (a) From electronic configuration valencies of X and Y are + 2 and -1 respectively so formula of compound is XY₂.
- (b) Ionic compounds can't pass electricity in solid state because they don't have mobile ion in solid state.
- **4.** (d) $AlCl_3$ sublimes readily on heating.
- 5. (c) Structure of *KCN* is $[K^+(C^- \equiv N)]$.
- **6.** (b) Sugar is an organic compound which is covalently bonded so in water it remains as free molecules.
- 7. (c) In the reaction $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O$ valency is not changing.
- **8.** (d) BF_3 does not have octet, it has only six electrons so it is electron deficient compound.
- **9.** (b) *NaCl* is a ionic compound because it consists of more elelctronegativity difference compare to *HCl*.
- **10.** (a) NH_4Cl has a coordinate bond besides covalent

and ionic bonds
$$\begin{bmatrix} H \\ H \\ H \\ H \\ H \end{bmatrix} C I^{*}$$

- 11. (b) $\overline{O} C = O$ has covalent bonds only.
- **12.** (b) Due to symmetry dipole moment of *p*-dichloro benzene is zero.
- **13.** (d)
- 14. (d) CCl_4 has zero dipole moment because of symmetric tetrahedral structure. CH_3Cl has slightly higher dipole moment which is equal to 1.86*D*. Now CH_3Cl has less electronegativity then CH_2Cl_2 . But CH_2Cl_2 has greater dipole moment than $CHCl_3$.
- **15.** (a) More the difference in electronegativity of atoms. Bond between them will be more polar.

16. (d) C - F bond has the most polar character due to difference of their electronegativity.

(SET -3)

17. (a) H_2S has angular geometry and have some value of dipole moment.

18. (a)
$$N \sigma \frac{\pi}{\pi} C \sigma \sigma C \frac{\pi}{\pi} \sigma N$$
$$\sigma \frac{\pi}{\pi} C \sigma \sigma C \frac{\sigma}{\pi} C \frac{\sigma}{\pi} C \sigma C \frac{\pi}{\pi} \sigma N$$

 9π and 9σ bonds.

19. (d) H_3O^+ has sp^3 hybridization and its shape is triangular pyramidal due to lone pair on oxygen.

20. (c) SO_2 molecule has sp^2 hybridisation.

- **21.** (b) In $\parallel Ca$ two carbons are joined with 1σ and 2π bonds.
- **22.** (a) In N_2O molecule $N \equiv N O$ structure is most contributed.
- **23.** (b) The shape of NO_2^+, NO_3^- and NH_4^+ are linear trigonal planar and tetrahedral respectively. Thus the hybridization of atomic orbitals of nitrogen in these species are sp, sp^2 and sp^3 respectively.
- 24. (a) *NO* has one unpaired electron with Nitrogen.

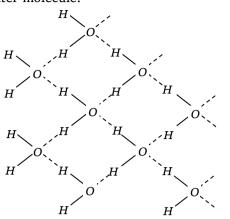
$$: N :: O :$$

...
(b) $-O - Cl - cl$

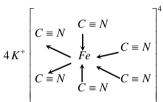
25. (b)
$${}^{-}O - Cl - O$$

CLICK HERE

- **26.** (b) Bond energy of Cl_2 is highest among all halogen molecule. Bond energies of F_2 , Cl_2 , Br_2 , I_2 are 37, 58, 46 and 36 Kcal mol⁻¹ respectively.
- **27.** (c) O_2^{2-} have bond order one

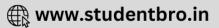

B.O. =
$$\frac{1}{2}[10-8] = \frac{2}{2} = 1$$
.

- **28.** (b) Electron lost from antibonding π orbital.
- **29.** (a) In ice each water molecule forms four hydrogen bond through which each water


🕀 www.studentbro.in

152 Chemical Bonding

molecule is tetrahedrally attached with other water molecule.


- **30.** (c) Hydrogen bonding is present in molecules which have *F*, *O*, or *N* atoms.
- **31.** (d) Structure of $K_4[Fe(CN)_6]$ is

32. (c) Sodium cyanide contain ionic, covalent and coordinate bond.

Get More Learning Materials Here : 📕

